Blog

antisense oligonucleotides
Blog

Understanding the DILI Risks of Antisense Oligonucleotides and the Value of Predictive In Vitro Testing

Antisense oligonucleotides (ASOs) offer therapeutic avenues for diseases that are currently unmet by alternative therapeutic modalities. However, the development of therapeutic ASOs is often hampered by hepatotoxicity. In this blog, we explore why 3D human liver microtissues are becoming an indispensable tool for de-risking ASO drug candidates and for reducing attrition in late-stage drug development. 

Read More »
Testing Drug-induced Mitochondrial Toxicity in 3D InSightâ„¢ Human Liver Microtissues
Blog

Testing Drug-induced Mitochondrial Toxicity in 3D InSightâ„¢ Human Liver Microtissues

Toxicological studies show that drugs can alter mitochondrial functions, potentially resulting in a deleterious range of toxic reactions from the induction of micro- and macrovesicular steatosis to lactic acidosis. These clinical manifestations are the consequence of drugs interfering with four main mitochondrial functions or constituents: aerobic respiration, beta-oxidation, and mitochondrial DNA homeostasis.

Read More »
Microplate technology
Blog

WHAT! Tissue Loss? InSphero Experts on Preventing Tissue Loss in Akuraâ„¢ Spheroid Microplates

Ensuring that spheroids are intact during liquid exchange is not fun and certainly not easy. That’s why we developed our Akura™ Microplates with a special feature to make your life much easier: The SureXchange™ well design enables optimal protection of the spheroids in a cavity at the bottom of the well during liquid exchange.

What else do you need to know to prevent tissue loss? Our Senior Product Manager, Dr. Frauke Greve, asked InSphero's 3D in vitro experts about their tips and tricks.

Read More »
MASH CALL Initiative - 3D in vitro mash model
Blog

The MASH CALL Initiative: A Strategic Pathway for Screening and Selecting Drug Candidates to Assemble IND Packages for Regulatory Approval

One of the challenges in drug discovery is to reduce drug attrition rates by identifying the best candidates early on. There is a need for advanced in vitro 3D models that predict future clinical responses reliably. These models need to be scalable at a low cost, automation-compatible, and able to provide a wide variety of readouts for complex phenotypic analysis. Having this in mind, we wanted to tackle the next avenue of drug discovery for MASH by offering solutions from screening of candidates to advanced phenotypic characterization. We initiated a MASH CALL campaign offering drug testing screening at 3 announced fixed dates spread over the calendar year.

Read More »
DILI assessment via InSphero's 3D liver spheroids and 3D InSightâ„¢ Liver safety solutions
Blog

Navigating the Trade-offs in DILI Assessment: A Closer Look at Complexity, Cost, and Scalability

Drug-induced liver injury (DILI) remains a significant challenge in the development of safe and effective pharmaceuticals. The complexity of DILI assessment in the preclinical phase is compounded by the need for solutions that balance cost, throughput, and turnaround time without compromising sensitivity, specificity, reproducibility, and robustness. This blog delves into the trade-offs between complex, microfluidic DILI assessment methods and more scalable, robust solutions, mature enough for industrial application.

Read More »
3D Cell Culture Blog Post
Blog

The Model of Excellence in 3D Cell Culture Research:
Scalable, Reliable, and Reproducible

To 2D or 3D Cell Culture - that is no longer the question.
It has become evident that 3D cell-based assays outmatch traditional 2D monolayer cell cultures, as they enable cells to grow into three-dimensional structures that more closely mimic the architecture and interactions found in tissues and organs. Discover the 3 critical aspects that set the industry-ready 3D in vitro models, apart from the rest of the available solutions.

Read More »
Scroll to Top

Your Success is Our Mission - Get in Touch

Fill in form below to contact our 3D in vitro experts

Sign up for our Newsletter

Get the latest news on 3D in vitro research

View resource

Fill in the form below to view this resource