Updated: May 26, 2024

Published: July 17, 2019

Scalable In Vitro MASH Models: Paving the Way to Cure Metabolic Dysfunction-Associated Steatohepatitis

InSphero CEO Jan Lichtenberg and renowned liver disease expert Dr. Scott Friedman of the Icahn School of Medicine at Mount Sinai recently talked to PharmaExec magazine about how to resolve a key bottleneck in NASH R&D. In this blog, Jan picks up where the interview left off to emphasize the importance of scalable in vitro models for NASH drug discovery.

Current testing strategies are a bottleneck

Non-alcoholic steatohepatitis (NASH) is not only a silent epidemic affecting millions of patients worldwide but also a highly complex metabolic disease. Amongst others, it involves lipid uptake of the liver, inflammation, and perisinusoidal fibrosis, resulting from an intricate interplay of different cells, insults, and pathways.

Approaching this level of complexity with reductionist in vitro cell models (e.g., the LX-2 stellate cell line in a 2D monoculture) to assess compound efficacy does not bear much promise of translational value in my opinion. Consequently, most of the research work evaluating anti-NASH compounds relies on well-characterized animal models, such as the STAM or DIAMOND mouse. These typically require 20 weeks to show the first hallmarks of NASH disease progression, while the appearance of severe fibrosis can take 30 weeks or longer. Aside from the lingering concerns of biological translation from a rodent model to a human in the clinic, the lack of scalability and the long experimental cycles of animal testing create a real bottleneck in NASH R&D today.

An image depicting a mouse used for animal testing for NASH drug discovery

While I am fully aware that a single-tissue in vitro model has its limitations, too, I’ll be so bold to claim that our technology removes the major bottleneck in NASH discovery.

Can scalable 3D in vitro models save the day?

Our scaffold-free 3D InSight™ Microtissues have substantially changed the way how phenotypic drug screening is performed today. Based typically on a relevant combination of primary human cells in co-culture, these cell models offer in vivo-like functionality and tissue architecture, a long lifetime for mimicking real-life dosing schemes, and deep insights into drug effects, including histopathological, omics, and biochemical endpoints.

Our Akura™ 96 and 384 plate technologies allow these complex models to be easily handled in automated screening workflows, from compound dosing to medium exchange and readout chemistry.

An image depicting Insphero's scalable Akura Plate technology and tunable 3D InSight Human Liver disease model

After making our mark in liver toxicology, oncology, and diabetes research, InSphero officially launched our 3D InSight™ Human Liver Disease Discovery Platform for non-alcoholic fatty liver disease (NAFLD) and NASH in July 2019. This ground-breaking platform has been precisely engineered to include all the human liver cell types and inducers necessary to replicate the progression of NASH in patients, from fatty liver (steatosis) to inflammation (NASH) and scarring (fibrosis) of the liver. Produced using primary human hepatocytes, Kupffer cells, endothelial cells, and stellate cells, our liver disease model is a dense, spherical 3D microtissue that can be driven or "tuned" to specific disease states. However, two key advantages are the compatibility with the 96-well microplate standard and a short experimental duration of only two weeks.

From discovery to the mode of action

The scalability and throughput offered by 3D in vitro models create new opportunities in drug discovery and drug development for researchers active in NASH:

  • Efficient de-novo screening of compound libraries using automation-compatible readouts at high robustness due to the excellent uniformity of the 3D model (typically <10% well-to-well and plate-to-plate)
  • Rapid repurposing screens of existing drugs in the metabolic space
  • Scalable combinatorial drug testing – to identify synergistic combinations of drugs and tackle to the complexity of NASH – is better than testing monotherapies. This is a highly promising strategy in the NASH space, which has been severely limited by the lack of scalable in vitro models
  • Supporting in vivo data with a human-only tissue model to better understand drug effects and mechanisms of action

InSphero partners with NASH development companies to access the discovery platform. To evaluate its predictive power, fast turnaround pilot studies are available.

While I am fully aware that a single-tissue in vitro model has its limitations, too, I’ll be so bold to claim that our technology removes the major bottleneck in NASH discovery. It plays a role complementary to established rodent models, which offer a fully systemic assessment of the drug in question, but lack scalability for discovery purposes. The human origin of the 3D in vitro model will also help to elucidate mechanisms of action or patient stratification prior to clinical studies.

“Fit for purpose” is the key phrase here – but I’d like to hear your opinion, too! Please leave a reply below to tell me what you think.

Discover what you can do with 3D InSight™

Watch this video to learn how we applied our scalable Akura™ technology and 10 years of experience in perfecting 3D in vitro human liver models to develop the first automation-compatible 3D in vitro human liver disease platform for NAFLD and NASH.

Read More

FDA Modernization Act 3.0
Blog

The FDA Modernization Act 3.0: Paving the Way for a New Era in Drug Development or a Gentle Nudge?

In a significant step toward making drug development more patient-centric, the FDA Modernization Act 3.0 was introduced as a major piece of forward-looking legislation in February 2024. For stakeholders across the biopharmaceutical industry, including companies like InSphero that specialize in complex in vitro models, this legislation presents both promising opportunities and new challenges. Will it change things?

Read the full blog post »
Scroll to Top

Your Success is Our Mission - Get in Touch

Fill in form below to contact our 3D in vitro experts

Sign up for our Newsletter

Get the latest news on 3D in vitro research

View resource

Fill in the form below to view this resource